Radiative Transfer and Thermal Performance Levels in Foam
نویسندگان
چکیده
The validity of predictive models for the thermal conductivity of foam insulation is established based on the fundamental geometry of the closed-cell foam. The extinction coefficient is experimentally and theoretically determined; the theoretical prediction based on measured geometrical properties differed from the measured values by an average of 6% for ten different foams An approximate method uses measured geometrical values to adjust the measured diffusion coefficients of reference foams. The adjusted coefficients are used as inputs to a computer program which computes the effective thermal conductivity of the foam as a function of time. Values of effective thermal conductivity measured on laboratory and field samples are used as a standard for comparing the results of the physical models and the ageing program. Measured and predicted values differ by 11%, 13%, 1%, 5%, and 1% for the initial thermal conductivity of five foams tested. These errors decrease with time. The ageing program is used to simulate the time-averaged performance as a function of foam density, mean cell diameter, and fractional distribution of solid polymer. The results of the simulation indicate that for a 15 year service life, the optimal density is approximately 3 lb / ft3 . Thesis Supervisor: Leon R. Glicksman Title: Professor of Building Technology
منابع مشابه
Heat Transfer Study of Convective-Radiative Fin under the influence of Magnetic Field using Legendre Wavelet Collocation Method
The development and production of high performance equipment necessitate the use of passive cooling technology. In this paper, heat transfer study of convective-radiative straight fin with temperature-dependent thermal conductivity under the influence of magnetic field is carried out using Legendre wavelet collocation method. The numerical solution is used to investigate the effects of magnetic...
متن کاملThermal Analysis of Convective-Radiative Fin with Temperature-Dependent Thermal Conductivity Using Chebychev Spectral Collocation Method
In this paper, the Chebychev spectral collocation method is applied for the thermal analysis of convective-radiative straight fins with the temperature-dependent thermal conductivity. The developed heat transfer model was used to analyse the thermal performance, establish the optimum thermal design parameters, and also, investigate the effects of thermo-geometric parameters and thermal conducti...
متن کاملVariation of Parameters Method for Thermal Analysis of Straight Convective- Radiative Fins with Temperature Dependent Thermal Conductivity
In this study, thermal performance across straight convecting- radiating fin with temperature dependent thermal conductivity is considered. The variation of parameters (VPM) is adopted to analyze the nonlinear higher order differential equations arising due to thermal conductivity and heat transfer coefficient on temperature distribution. Pertinent parameters such as thermo geometric and radiat...
متن کاملEffect of Thermal Conductivity and Emissivity of Solid Walls on Time-Dependent Turbulent Conjugate Convective-Radiative Heat Transfer
In the present study, the conjugate turbulent free convection with the thermal surface radiation in a rectangular enclosure bounded by walls with different thermophysical characteristics in the presence of a local heater is numerically studied. The effects of surface emissivity and wall materials on the air flow and the heat transfer characteristics are the main focus of the present investigati...
متن کاملRadiative heat transfer: many-body effects
Heat transfer by electromagnetic radiation is one of the common methods of energy transfer between objects. Using the fluctuation-dissipation theorem, we have studied the effect of particle arrangement in the transmission of radiative heat in many-body systems. In order to show the effect of the structure morphology on the collective properties, the radiative heat transfer is studied and the re...
متن کامل